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To calculate the flow of an inverse mixture of multiatomic gases in a resonator taking 
into account all the gas dynamic and optical phenomena is a complex and unsolved problem. 
Several simple one-dimensional models exist [i, 2], which are based, in particular, on the 
constant-gain approximation. On the basis of these models the condition for steady-state 
lasing is 2k*d = --in r~r2 [3], where k* is the saturated gain, d is the distance between the 
resonator mirrors, and rz and r~ are the reflection coefficients. Since the gain of the 
active medium at the input of the resonator (x = 0) k= # k*, a discontinuity occurs in the 
values of the required variables. This discontinuity can be eliminated by introducing a 
thin transition region in which either the value of one of the reflection coefficients r = 
r(x) is assumed to be variable [i], or a certain relation is introduced for the radiation 
intensity I = l(x) [2], which ensures a transition from the gain k~ to k*. Further along 
the flow the set of equations of a relaxing mixture of gases is solved with the condition 
k(x) = k*. Obviously there is a certain amount of arbitrariness in choosing any "matching" 
relations. We will show that an analytical solution of the problem can be obtained within 
the framework of the model considered. Note that analytical models for gasdynamic C02 lasers 
have been constructed previously [4-6]. These models describe the physics of the processes 
occurring in the resonator fairly well, and enable one to calculate the output power~ How- 
ever, the transition region at the input to the resonator is not always considered, and the 
effect of radiation on the change in the gasdynamic parameters of the flow is ignored. The 
model assumed in this paper also enables one to take these features into account. In addi- 
tion, in the approach adopted here the problem of calculating the structure of the flow in 
the resonator is considered as a problem in perturbation theory, which has much in common 
with calculations of the structure of a shock wave in a relaxing mixture of C02 +N2 + H20 
(He) [7]. This follows, first, from the fact that for a plane Fabry--Perot interferometer 
the problem remains one-dimensional since across the field of flow tNe radiation intensity 
in a high-Q resonator is constant (for rl, r2 > 0.5) [8]. Second, to solve the problem 
one can use the Conservation equation in integral form [9] 

pu = p| = CI, p q- pu ~ = p~ q- p~u~ = C2,~ 

U2 N U~ IF 

i = l  t = l  

R p=p-~ T. 

(i) 

where p, u, p, and T are the density, velocity, pressure, and temperature of the mixture; 
~, Bi, molecular weight and the molar fraction of the i-th component of the mixture; El, 
internal energy of the individual modes of oscillation; and I = l(x), a function representing 
the intensity distribution of the radiation. Up to the section with index zero (the input 
to the resonator) I ffi 0 and the constants C~, C2, and C3 are known from the solution of the 
problem of the expansion of the mixture of gases (e.g., for the discharge from a nozzle). 
For the closure of system (i) we need equations for the unknown functions E i and I. The re- 
laxation equations for E i are chosen in the Landau-Teller form for each mode of oscillation 
[7]. Intermode exchanges by quanta in this model are taken into account approximately in 
terms of the effective oscillatory relaxation time, as in the Anderson model [8]. 

In laser mixtures based on COa the ratio of the total oscillatory energy to the total 

damping enthalpy H~ is the small parameter ~ =~Ei/II~<<i [7]. Since the radiation energy 
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is part of the oscillatory energy luminescing from certain levels, the ratio 8= (~iE,+ 
I/p=u~)/H~ is also small. In view of this we are dealing with a typical problem in pertur- 
bation theory, when, to a first approximation, we can assume that e has no effect on the 
density distribution, the pressure p etc., found from the conservation equations (i) for 

= 0 [i0, 7]. The values of p~, p=, u~, T= obtained in this way are used to solve the re- 
laxation equations irrespective of the remaining equations of hydrodynamics for e = 0. If we 
introduce the mean number of quanta for each mode e i = [exp(Gi/T i) -- I] -~, where ~ = hvi/k 
is the characteristic temperature, the equations for modes i = 1,3 in the resonator take the 
form 

d-x ---- u~-~ 1 - -  u~n~hv[3Co~ ' (2 )  

d% _ ~ (%)  - ~. ( r . )  k1 

dz Uoo~ 3 uoono~hV~Co2 " 

Here and henceforth the notation used is the one generally employed [8]. Since at the inputs 
of the resonator the frequency of the stimulated radiational transitions exceeds the frequency 
of the collisions which deactivate the upper laser level, the latter can be neglected in the 
region 0~x ~ 6.* 

Henceforth, we will use the expression for the gain at the center of the llne with the 
simplifications made in [8]. It can then be represented in the following form: k = C(e3-- 
e,), where C~const, and e i << i. The quantities ei(x = 6) = e~ can be found from the con- 
dition C(e~ -- e~) = k* and by preserving the number of oscillatory quanta e~ + e~ = (e~ + 
e3) x =o =ez(x) +e3(x) =M=const, whereM is known from the solution up to the resonator input. 
Using these conditions and Eq. (2) without the eollisional terms, we can determine the con- 
tribution to the radiation power made by the transition zone 

tb u~n~hv~co, I~ (3) 
P* = 1 --r C In ] /  k--~-, 

where t and b are the transmittance andwidtb of the mirrors, rl =i, r2 =r= l--a--t, and a is 
the loss coefficient, i.e., for simplicity we assume that the losses and the radiation out- 
put are concentrated on one mirror. In the main region we have the condition k* = const, 
i.e., dk*/dx = 0. Then it follows from the expression for the gain that de~/dx~de~/dx, 

since to a first approximation, i.e., for r = 0, p = p=, u = u~, T = T= = To etc., every- 
where inside the resonator and C ~const. In the equilibrium state e, = e,o(To), but since 
we have imposed the additional condition k* = C(eso -- e,o) = const on the solution, the 
equilibrium value of the oscillatory energy of the third mode will be k*/C+e,o. 

The main part of the useful power P is concentrated in the nitrogen molecules, with the 
exception of a part P,(3), related to the transition zone. In this connection, to estimate 
P we will consider the relaxation equations only for the modes i = 3 and i = 4, while the 
population of the lower levels in the modes i = 1,2 will be neglected [5, 6] due to their 
rapid relaxation. Then in the steady-state lasing mode e3 = e~ = const everywhere inside 
the resonator for p = const and T = const. On the other hand, computer calculations show 
[2, 8], that for k* = const the condition de~/dx~del/dX is in fact realized. The linear 
model [2], strictly speaking, is extremely rough for describing relaxation processes inside 
the resonator. However, we would expect to be able to obtain a correct estimate for the 
radiation power P which is an integral characteristic. For this purpose we will normalize 
the terms with radiation in system 2 with respect to the total concentration nco= + nN2 = 
n=8c02 +N2- We then obtain a model mixture in which the nitrogen is formally replaced by 
CO2, but the relaxation of which is characterized by the parameters of the gases of the 

initia]ly chosen Composition. 

*In the simplest model [4] the collisional terms are neglected in the whole region of the 

flow assuming that the length of the resonator L ~ u~T,. 
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Solving the system of relaxation equations (2) taking these factors into account, we 

obtain 

-7- ~JCO2+N u ~n=oh v ~ uoo~ 3 
(4) 

where I (X) ---- 2k* u~ 'q  u~'c 3 

_ 1 [  1 , 1 ) 
D - -  -~- [u| T u - ~  ._ 

The expression for the output power can be represented in the form 

P~ - l + ,  2k*O "V-S%-" + " - ~  " 

(5) 

(6 )  

Since u~a >>u~T,, the term 1/u~T3 can be neglected. This can in fact be done for any 
resonator length L since because of the condition k* = const assumed above the modes i = 
3,4 are either damped [6, 8], or approach the above-mentioned state e~o = k*/C + e~o which 
is not the usual equilibrium state related to the collisional deactivation in the ~u~a% 
scales. Then, for x = 0 and ~ = ~C02, using the energy equation (i) we obtain the following 
estimate of 6: 

e* ( 1 - -  ele) 2k'TiC(z" 

If the resonator is not very short (L >> u~T,) we can neglect the last term in expression 
(6), and we then obtain with respect to the total output 

,,~ = P - - - P l  - -  t h ' v ' I V A ( r  --elo) I~CO24-N2 (7) 
poou=oS I + r k*d}~ ' 

where N A is Avogadro's number. 

Hence, it turns out that to estimate the specific power the following information on 
the flow is sufficient: For a specified resonator geometry and the percentage composition 
of the mixture it is necessary to know the temperature T in the resonator in order to calcu- 
late e~o and the initial data for calculating e~. It is not necessary to know the constants 
of the elementary processes and we only need to satisfy the inequality u~Ta >>u~T,. For 
very short resonators (L~u~T~) it is necessary to calculate the quantity u~T,. 

In order to estimate the effect of the radiation on the change in the gasdynamic 
parameters in the resonator it is necessary to consider the following approximation with re- 
gard to ~, i.e., to obtain the quantities p' = (p -- p~)/p~, 0' = (P -- p~)/p~ etc. The 
latter can be found by linearizing system (I) with respect to e, and have the form 

p,  ~'ML~(-) ~, _ ~ (~) 
= t - - M i '  t - - M i '  

u '  = 8 (x) r '  - ( ? M i  - -  i )  8 (x) 
t - - M L '  - -  M L  - -  l ' 

(8) 

where M~ is the Mach number of the flow for ~ = 0, and y is the adiabatic constant. The 
figure shows the results of calculations obtained on a computer by V. N. Makarov (the broken 
lines) and using Eqs. (3)~(8) (the Continuous lines) for the same flow conditions. The 
initial data were as follows: a mixture of 15% C02 + 83% N2 + 2% H20, in the forechamber 

#The collisional deactivation in the modes i = 3, 4 become important after the radiation in- 
tensity becomes zero when the condition k* = const is in fact no longer satisfied. 
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of the nozzle p = 15 arm and T = 2060~ at the resonator input u~ = 2.10 s cm/sec, p~/p = 
10 -4, p=/p = 5.10 -3 , T~ = 393 ~ k~ = 0.004809 cm-*, in the resonator k* = 0.000799 cm-*, 
d = 80 cm, L = 30 cm, t = 0.i, and u = 0002 for two transits of the beam, and the ratio of 
the height of the nozzle output to the critical value Sa = 53.83. Within the framework of 
models considered [1-6] the agreement must be regarded as satisfactory. For calculations of 
the profiles of the temperatures Ta and Ts we used the rate constants given in [ii]. 

The author thanks V. N. Makarov for providing the theoretical data for comparison and 
for useful discussions. 

LITERATURE CITED 

l, 

2. 

3. 

4. 

5. 

6. 

7. 

8. 
9. 

10. 

ii. 

I. A. Generalov, G. I. Kozlov, and I. K. Selezneva, "Calculation of the characteristics 
of a gas flow laser," Zh. Prikl. Mekh. Tekh. Fiz., No. 5 (1972). 
S. A. Losev and V. N. Makarov, "The power of a gas flow laser at high pressure," Zh. 
Prikl. Mekh. Tekh. Fiz., No. 4 (1975). 
T. A. Cook, Power and gain characteristic of high speed flow lasers," J. AppI. Phys., 
40, No. 9 (1969). 
A. L. Mikaelyan, V. P. Minaev, Yu. A. Obod, andYu. G. Gurkov, "The characteristics of a C02 
laser with transverse pumping operating in the gain mode, r' Kvantovaya Elektron., No. 5 (1974). 
V. K. Konyukhov, "Gas flow CO= lasers," Fiz. Inst. Akad. Nauk Preprint, No. 141 
(1976). 
A. I. Ananlkin, "Calculation of the electrical characteristics of gas flow lasers," 
Vopr. Radioelektron., Set. Obshch. Tekh., No. 1 (1976). 
V. M. Kuznetsov, "Population inversion of the oscillatory levels of molecules near 
bodies in hypersonic flow," Uch. Zap. TsAGI, 5, No. 6 (1973). 
S. A. Losev, Gas Flow Lasers [in Russian], Nauka, Moscow (1977). 
V. M. Kuznetsov~ "Oscillatory relaxation of multiatomic molecules in a field of 
monochromatic radiation behind a shock front," Zh. Prikl. Mekh. Tekh. Fiz., No. 1 
(1977). 
V. N. Zhigulev, "The problem of the flow of a nonequilibrium gas," Dokl. Akad. Nauk 
SSSR, 149, No. 6 (1963). 
R. L. Taylor and S. Bitterman, "Survey of vibrational relaxation data for processes 
important in the COs--Ns laser system," Rev. Mod. Phys., 41, No. 1 (1969). 

28 


